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OF A NON-LINEAR PARTIAL DIFFERENTIAL EQUATION WITH SHOCKS

Prepared by:
A. Douglis

ABSTRACT: In a simple problem with shocks and rarefactions for the equation ;

1.2 _
ut+(5u +u)x = 0 ,

six alternative calculation procedures have been tested as to cost and
accuracy. Best results were given by the least elaborate method with the
finest mesh and by the most elaborate method with the coarsest mesh.
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This report is a study of the relative accuracy of six alternative methods
of calculating a solution involving shocks and a rarefaction wave for the
equation

2+u) = 0 .

1
u, + (5 u .
The equation is equivalent to that proposed by Burgers as a simplified model
for shock problems in fluid dynamics. The results are bslieved to be

suggestive as to calculations in such problems.

This work was carried out under NOL Task No. FR=30.

ROBERT ODENING
Captain, USN
Commander
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A COMPARISON OF NUMERICAL SCHEMES 10 CALCULATE THE SOLUTIONS
OF A NON-LINEAR PARTIAL DIFFERENTIAL EQUATION WITH SHOCKS
INTRODUCTION

A simple problem with shocks and rarefactions for the equation

(1) u, + (%uz +u)_ = 0

has been subjected to calculation by various procedures and all the results
compared with the exact solution. The methods thus tested are
(1) Lax's original centered difference method [1],
(2) a left difference method without viscosity [2],
(3) the viscosity method of Lax and Wendroff [3]
(3.0) without added artificial viscosity,
(3.1) with added artificial viscosity,
(4) a modification of the Lax~Wendroff method for which convergence
has been proved [4]
(4.0) without added artificial viscosity,
(4.1) with added artificial viscosity.
The programming of these schemes for an IBM 704 machine was performed mainly
by W. Parr, with the assistance of Mrs. S. Madigosky, for whose patience and
intelligent care I wish to express my gratitude and thanks.
Only calculations of roughly the same cost are compared. A multiplica-
tion or division costing about the same as ten additions, the measure of
relative cost has been taken as

c= 10 ta
10,000 hk ’
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where h and k are the horisontal and the vertical distances, respectively,
between consecutive grid points (thus, 1/hk measures the total number of
calculations performed in unit area of the x,t-plane), p denotes the number
of multiplications and divisions performed at a typical grid point, and «
the number of other operations at that point.

The problem treated is that of finding a generalized solution v of (1)
with initial data prescribed as

O forx<O

for 0 < x < 0.3
for 0.3 < x < 0.9
for x> .9

u(x,0) =

o N

This problem is easily solved explicitly with a rarefaction wave centered
at (0,0) and shocks issuing from (.3,0) and (.9,0), each shock being a

line of slope

vhere u_and u_ are the limiting values of the solution at the right and
at the left of the shock, respectively. In the interval 0 Lt« 0.6, 1in
particular, the solution of the problem is given by

0 forx<t
F-lfort<x<3t

u(x,t) = 2 for3t<x<.3+%t
1l for .3+%t<x<.9+%t

0 rorx>.9+%t;

(See Figure 1.) This solution is known to be uniquo.-g/



(1.8,0.6)

(0.6,0.6)
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u =01

0.6

1.9

FIG.1| EXACT SOLUTION
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Note that, in this problem, O < u < M, wvhere

M= 2.

The same bounds, by a priori reasoning, applies to the calculated values of
u in the first, second, and fourth schemes, and for present purposes will be
assumed in the third. Note also that all schemes considered, extept the
third, have been proved to render approximations to the solution which are
as close as desired, provided h and k are sufficiently small and the ratio
9 = k/h appropriately bounded. ‘

THE CALCULATION SCHEMES TESTED

The notation in the following is that of [4]: v,, denotes the value of

i)
u , as calculated according to the scheme in question, at the grid point

15 = V41,5 = 1 BV T Vi, Vi

F(u) = u2/2 +u FiJ = F(vij)’ F;J = F'(vij) . Also, as above, © = k/h .

x=1h, t = jk; w,, = (v v“)/h and W

1. Lax's original centered difference method. Lax's original scheme

was based on the difference equations

e
) - E(F

!
Yi,31 T E(’1+1,,1 * Vi, 141, = Fi—l,j) .

According to N, D. Vvedenskaya [6] (Theorem 1), the scheme converges when
9 max|F'(v) | <1, or, in our case, when 9 < 1/1 + M) = 1/3 .

2. A left difference method without viscosity. In this scheme,

- ( -
viJ O‘Fij r

Vi, 54l 1,5 -
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The asymmetry of the scheme is permitted because of the non-negativity of F',
According to a remark at the end of the appendix below, convergence occurs

when 8 < /4 .

3. The viscosity method of Lax and Wendroff. In this method,

2
0 o, 2. ., 2
Vi, 41 = Vag T3P, iy g) ZLFL T+ FLY P (g5 = Vey) =
S PR S P [C7PE RN | I N Y
-1, iJ i) i-1,] -1, i3 ?

whare Q4 = -BIFiJ - Fi+1’j| (vi+1’J - vij) , B being

a non-negative constant.hers taken as zero in method 3.0 and as 1/4 in

method 3.1. Llax and Wendroff [3, p. 227] expect the scheme should be stable,

in the case B =1/4 , when © maxlFiJl < .78 , thus when 8 < L78/(14M) =

.26. Stability in the case B = O by their formula demands merely % < 1/3 .

(The B in this paper is one fourth the quantity Lax and Wendroff call B.)

L. A modified Lax~Wendroff scheme. The calculation scheme here con—

sidered is

2
_ o
vi,j+1-vij— S

the constant B entering Qij being taken as zero in Method (4.0) and as
1/4 in Method (4.1). For B > 0, it is proved in (4] tbat this method
converges if € is sufficiently small, but larger possible choices for &
than emerge from that discussion are determined in the appendix below; these

are

;2 2
Py Fucy, 3 DR 0y vy =FL T 5 0vgymva, 2 19900 =%y

e '-w»»« IR e st
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16 for B=0 (Method (4.0))

o
i

.156 for B = 1/4 (Method (4.1)).

Two cost levels (C =8 and C = 32) were arbitrarily fixed for all
the above schemes and values of O selected near their permitted maxima.
Then mesh widths h and k were obtained to accord in each case.vith the
predetermined C and @ . The values of the parameters thus entering are

displayed in Table 1.
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CONCLUSIONS

The results of the calculations by each method except 4.1 were tabulated
after some thinning for the rectangle

0 < x 1.8
R 9 ¢ ¢ 6,

IAIA

the case C = 32 being presented here in Tables 4 — 8. The mean absolute
error and root mean square error over all mesh points in R and, separately,
in its top boundary line L are given for all calculations in Table 2. These
results suggest the following observations, at least with respect to the
example studied:

1. The use of artificial guadratic viscosity (B#0) in Method 3.1 did
not clearly reduce the average error and in Method 4.1 greatly increased it.
Other values of B and lower mesh width ratios might, however, have led to
better results.

2. Lax~Wendroff viscosity worked well in the method of centered differ-
ences (3.0) for which it had been proposed, but disappointingly in the left~
difference scheme (4.0). Perhaps the latter method would have performed
better, however, at a higher cost level at which the x-axis would be more
finely subdivided.

3. Quadrupling the cost less than halved the average error.

4. Methods 2, 3.0, and 3.1 worked best: at identical costs, closely
comparable mean errors resulted from the simple scheme and refined mesh of
Method 2 and the refined schemes and coarser mesh of Methods 3.0 amd 3.1.

Additional conclusions arise from comparing the three most successful

methods on a region of relatively great transitions.
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AVERAGE ERRORS

¢ = 8.00 ¢ = 32,00
Method
E, B S S | E E § §
1 20 .18 .31 .28 | .12 .11 .20 .18
2 Q4 12 .23 .20 | .08 .08 .15 .16

3.0 Jd6 .11 .29 .22 .08 .07 .18 .23
3.1 .18 .11 .29 .18 .09 .08 .18 .19
4.0 24 W21 340 W32 16 .15 .25 .25
4.1% 34 34 .55 .63

R denotes the rectangle 0<x<1.8, 0<t <.6

L  denotes the line segmént 0 < x < 1.8, t= ['6]k’ where
[s]k is the largest exact multiple of k that does not
exceed s .

ER = average absolute deviation of calculated from exact values
of the solution at the lattice points in R .

EL = average absolute deviation of calculated from exact values

of solution at the lattice points on L .

root mean square deviation at the lattice points in R .

root mean square deviation at the lattice points on L .

QP
i

index of total cost .

*Better results were obtained by Method 4.1 with B = 1 and a value
of & much < Oper ; they still compared poorly with the others.

Table 2
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For C = 32, in'Tables 9, 10, and 11 we present with no thinning in the
x-direction such a comparison over the trapezoid
~.05 + 3t < x < .95 + 3t/2

3 < t< .6,

this area covering much of the vicinity of the two shocks and a small part
of the rarefaction wave. The mean absolute error and the root mean square
error over all the mesh points of T appear in Table 3. From these compila-
tions it seems reascnable to add the following conclusions:

5. By all three methods (2,3.0 and 3.1), calculated values tend to be
too low to the left and too high to the right of a shock. These methods thus
dull the apparent sharpness of a shock, but Method 2 perhaps to the greatest
extent.

6. Method 3.0 seems most prone to occasional wild errors (occurring in
this example to the right of the first shock); these errors, however, are
rapidly corrected.

7. The average absolute error over T is about the same for the three
methods; the mean square error, however, is appreciably less under Methods 2
and 3.1 than under Method 3.0.

Further study of our six methods might consider the effects, at constant
cost, of varying the mesh width ratios below their maximum permissible values
and also of varying the coefficient of artificial viscosity B .

10
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AVERAGE CALCULATION ERROR
IN

REGION OF RAPID TRANSITIONS

C=32
Method
ET ST
2 25 1 .2
3.0 23 | .36
3.1 2 | .2

T denotes the trapesoid =-.05 + 3t < x < .95 + 3t/2
3 <t <6
ET = average absolute deviation of calculated from exact values
of the solution at the lattice points in T .

ST = root mean square deviation at the lattice points in T .
C = index of total cost

Table 3

11
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TABLE9 LEFT DIFFERENCE
EXACT MINUS CA

ONJ 33 34 35 36 3 38 39 40 4 42 43 4k 45 46 4T
88

86

84

82

80

78

7

7%

72

70

68

66 .
64 25
62 .203 .2&.258/.
60 2216 247248 .280
58 .206 @,.ﬂ(.z% 288 L4267
56 (220 24 (232 .233 .300 7320 ~.
54 212 233 ¢705 218 .229 .319 =274 =119 =,
52 226 .25877.226 .204 .230 .3 ~.230 =.095 =.033 -,
50 .220 .%.25(.208 .193  .236  .380.07793 -=.190 ~.074 -.025 —=.006 .
48 235 26¢”.228 .190 .18, .249 . 7340 -.153 -.057 -.018 —=.004 .004 .
61229 .253 eS8 .206 .173 .179 .270 Z.288 -.121 -.043 -.013 —=.003 .003 .01 .

40,

* The dashed line is the right hand boundary of the rarefaction wave: the solid lines
intersecting it are the two ahocksj. The coordinates

x = .02739 (1-1), t = .006845 (J-1)
to whieh any particular entry corresponds are ascribed to the decimal point for that



{OD WITHOUT VISCOSITY. METHOD 2, C=32.
TED VALUES IN REGION OF RAPID TRANSITION'*

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68

.358
.387_.69
282 . .§2<063
307 AT 6¥r=-.071 .
241 335 IB1 4T —.01, 213466 -
261 368,509 5206 —.073 178 5529 —.261
218 280391 53547270 ~.069 L4 M5 —.316 =130
.234 330" 406 w242 -.063 115 .349°=.376 ~.165
207 .253 155 425 ST =.213 =.056 .091 .29347440 —.207
1220 ZTUTT330 4k >eWET —.185 =.049 .OT1 .242 5806 ~.255
36287 .339 477530 -.158 =.041 .055 .197 4 -.310-.128
78 .352 .50<.291 -.132 -.034 .043 .159 .364=.371 -.163
71 549=.252 ~.109 —=.028 .033 .126 .305436 ~.20/
16 -.215 -.088 =.022 .025 .099 .251 < A04 -.253
g0 -.071 -.017 .019 .077 .203 9 ~.309 -.126
56 -.013 ,014 .059 .163 .3654.370 -.161
10 .011 .045 .128 .304 »7435 —.202
08 .03 .100 .250 —,803 —.251
25 .077 .201 ~.306 —.123
59 .160 .3634.368 —.158
25 .302 434 ~.199

2563 0B, —,533 =.206
.588=463<. 587 - .28
650 7640 ~.295
209 -.348 £.137
6= . 405 ~.172
.213
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APPENDIX
Our aim here is to find as large values of 4 as possible for which
methods 4.0 and 4.1 will converge. Two procedures will be compared, the
first that described in [4] and the second a modification of it. The second
procedure turns out to be the better and leads to the values actu. "ly used
above.

Calculation scheme 4 is that of [4] with

f=F, g=0, 8=0, qijs-%(l+'ij)2wij+qij ,

see pp. 5 and 21 and equation (A.Lb)'!}'/ In inequality (4.7), in particular,

therefore, as we see at once,

b =g{1+v )2

1 + B|wW

9 2
_5(1 + vij) + B|W

11, 1,510 Sy e

To obtain inequality (4.8), it is well to note that

Qy =~ B.Wij.\‘lwij = f(wij) ’ where f(W) =~ BW|W ,

and to use the method described for case (4.5¢). In the result, we evidently

will have

.9 2 _® 2
Bij = 5(1 +vij) + 2B|'vlh| ’ Cij =31+ vi+1’3) + 2B|Hh| , H= mHij ,

Hij =1+ (vij + vi+1,J)/2 , Dij = Eij =E='l.1 = Egd =0,

where W!, and W!, are numbers between W,, and W , and between W,, and
ij i) i-1,]

ij i}

¥141,5, respectively.
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Both ways of bounding € begin with the argument for Theorem 5.1. In
this argument, & 1is restricted by the single requirement that the co-

efficient of v in the right member of (5.2) be nomnegative, and, there-

1]
fore, that

1-9(F'™ + b* + c* = ks*) > 0 ,

the star in each case indicating a maximum value of the quantity concerned
for the various possible values of its indices or arguments. Since

F'*=1+M, b¥=cksz g(l +M% MB, s* =0, we have the condition

(20 (+m%P+ (Q+M+22BO-1<0.

M being equal to 2, for B= 0 we thus have -
(3, o < %21/ = .206" :
and for B =1/,

(3, & <=F2= .1,

In the first of the two ways of bounding, © now is subjected to an
additional restriction arising from the argument for Theorem 5.2. According

to this argument, the coefficients

Py = 1= 8[ev ‘-2’(1+v1"1)2+ §(1+v1+1’3)2+ 28Jwy, | + 28[w, | ]
and
a = 5(1 = 20(144)) .

in (5.8) (=0 in this equation) must be made to satisfy the conditions

22
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(p.14) pij >2/3 and a > 0 ; hence, we require
(1+M2%+ (1+M+4BM)8-1/3<0 and 9 < 1/2(1+M) .

The first of these inequalities would imply the second. Since M = 2, the

first inequality is equivalent to

1/2
(4), 05(7/3)6 =1- 087" for B=0
and to
(4), I=2 = .06 for B=1/4

It expresses the first of the two alternative bounds we havo considered upon
e .

The second method of bounding © comes from a second method of proof
of Theorem 5.2 1n which an argument of Vvedenskaya has been applied. We

begin with inequality (5.7) which, in the present case, reads

<[1-8(F, +B

i 1 - iJ

gy * Oqgddvgy + O(FL g+ Bygdwy ) g + 905 yv

i+l k &
-—LF'—20(1+—'L-—'L'1)]V --Z-Fji-lj ’

single or double bars connoting intermediate values of the arguments as
occurring in Taylor's theorem with remainder. The bracketed part of the co-
efficient of “132 is required to be positive, as previousiy{ but the
coefficient of wiJ , unlike before, is to be merely non-negative. Hence,

O now is to be such that min F" — 20(1+M) > O and 1 — 9(F'*+B*+C*) > 0,

the star again signifying maxima of the quantities in question.

23
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Since F" = 1, the first of these conditions is
= 166 .

(5) 9 < 1/2(1+M) =

N

o
The second, which we write as

)22

(14M)°9° + (L+M+4MB)6 - 1 < O ,

reduces to (3)o for B= 0 and to the condition

(5), o < =3 - 156 tor B=1/4 .

No stronger condition, as we shall now see, arises out ofwthe further

argument. Let

'\711 = max ("1-1,1’ 'ij’ o) , N.1 = max (O, n:.x wij) .

From the above inequality, we have

~ c .~ 2
(6) vy, S (1‘“15)"13*9013"5‘5“"13 )

where ¢ = min F" - 20(1+M) = 1 - 26(1+M). (In this type of argument we
follow Vvendenskaya.) Since @ 1is supposed to satisfy the conditions of
the previous paragraph, ¢ > O . )

Next, like Vvedenskaya [6], consider the quadratic expression

- - - 5.2

H(y) = Hij(y) =Q OCiJ)y A
H will be monotonically increasing, i.e., H'(y) =1 - 0(.‘.1'1 - key >0,
if y<(1- Ocij)/kc . Hence, in particular

24
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if, for all 1, N.1 <(1- -OCiJ)/kc . In (5.10) we have proved, however,
that Nj < sup Yio < n/h , m being a bound for Vo (In the present case,
i

"ij = WU as used on p. 14, and b = 0,) Hence, N;j satisfies the desired

condition (7), if @ is so fixed that, for all i, wm/h< (1-0c“)/kc .

Substituting in this for ¢ and also replacing C by its upper bound

1
‘-2’(1 +M)% + 2MB, we arrive at the condition

(1+M)(2m - 3(1 + M))8% = (m+2B) 8 +13 O ,
which, for m = M = 2 becomes
%02-(2+4]3)0+120

For B=0 or B=1/4, the quadratic expressibn on the left is definite:
the inequality is satisfied for every value of € and does not really con-

stitute a restriction.
~r
w

We are enabled by (7) to replace 13

in the right member of (6) by

N j and, thus, to obtain

Sy 2
L, SNy T2y

and, therefore,

(8) NJH < NJ - -ikn.1 .

From this, it is easy to produce an upper bound for Nj

alternative proof of Theorem 5.2. We shall show,to be specific, that

completing this

25
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(9) N, < 2/cjk .

Set 2z(t) = 2/ct, 2z, =12(jk) . Since dz/dt:-czz/z y integrating

J
we obviously have

(j+1)k

IR % &///\ 2(t)2 dat > - %kzjz ’
ik

or
(10)

where

H(y) E y - cky*/2 .
From this we shall prove by induction that

(11) z J=1,2y000 3

j ’
these inequalities are equivalent to (9). The first step is to note that

Zy 2 N1 ’ 22 2 N2 » consequences of the fact discussed in a previous

paragraph that 1/ck > m/h 2 N Next observe that H(y) monotonically

1% -
increases for y < 1/ck and, furthermore, that 2, <1lfek for j>2 .
for some index j > 2 , for that index H(zj)BH(NJ) .

Therefore, if 2N

2%

From this, (10), and (8), if for a particular index j > 2 we know z, >N

3=

we can conclude that

By O H(zj) > H(Nj) 2 Ny oo

The induction for (11) is thus complete.

26



NOLTR 63-8

We note in summary that our first method bounds @ according to (3)
and (4), our second method according to (3) and (5). The second results are
obviously better; they permit use of the values

(12) o 166 for B=0

156 for B =1/4

in the calculations.

Remark: The left difference scheme without viscosity of section 2 is
of type (4.4b) with

£f,.= F

1j =0.

13° 8137 Uy T By

Reasoning like that above concerning Theorem 5.1 shows that, in this situe-
tion, M=m if O max F' <1, i.e., if & <1/(1#M) = 1/3 . The further

restriction
s
(13) 9 < VY/m =1/

is easily seen to be required to bound Vy g (by the second method) according
to Theorem 5.2. To show this, we start from (5.6) which, here, leads to the

inequality

1 k 2 " 2
vy 341 S (1- °Fi,1)"15 + ORIy g - 5(?'1'3‘:“ + }13"1-1,3 )

and thus, in previous notation, to

~ kawr 2
< -
= Vi3 2"1j

¥1,341

since F" = 1 and since the coefficients on the right are all positive

27
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because of the first restriction upon @ . The previous argument leading to
the desired upper bound for v, j will apply completely, provided we now
require 2m/h < 1/k , a restriction vhich is the equivalent of (13).

28
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FOOTNOTES

1/

By generalized solution we mean essentially a piecewise
continuous solution satisfying the pertinent shock condition
along discontinuities. More refined concepts of generalized
solution are to be found in [2] and the accompanying references.

2/ For uniqueness theorem, cf [5].

3

This and other numbered equations, theorems, etc., not belong-
ing to the present paper are to be found in [4].
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